

Transformer-based models and Applications for Information Retrieval

NTUST - Information Retrieval (2020.12.18)

郭家錦 (Chia-Chih Kuo)

Natural Language Processing Laboratory
National Taiwan University of Science and Technology

Transformer

BERT

XLNet

RoBERTa

ALBERT

Tokenization

Homework 6

Attention mechanism

✓ **Attention mechanism**

- **Encodes long-distance dependency**
- **Captures contextual relationship**
- **Widely used in a variety of neural networks**

Attention mechanism

✓ Attention mechanism

...is just a fancy word for **weighted average**

α_i 0.04 0.14 0.06 **0.73** 0.01 0.02

They eat two **apples** this morning

w_i (300-dim embedding for each word)

<query> red fruit

- Conceptually, $\text{Attention} = \alpha_i w_i$

Attention mechanism

✓ Scaled dot-product attention

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

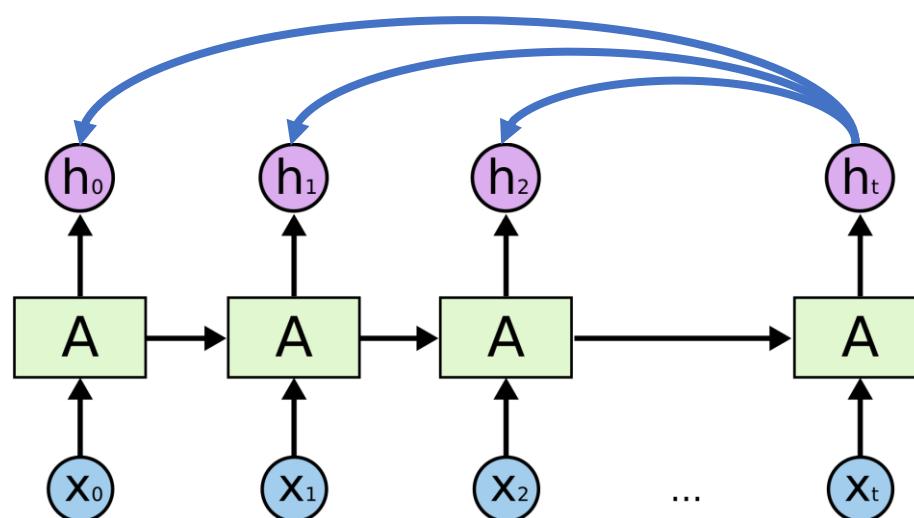
Feed query/document through individual FFNs to get Q, K, V :

- $W_{\text{query}}, W_{\text{doc}}$: a sequence of word embeddings of query/document
- d_k : dimension of word embeddings
- $Q = \text{FFN}_Q(W_{\text{query}}) ; K = \text{FFN}_K(W_{\text{doc}}) ; V = \text{FFN}_V(W_{\text{doc}})$

Attention mechanism

✓ RNN with attention

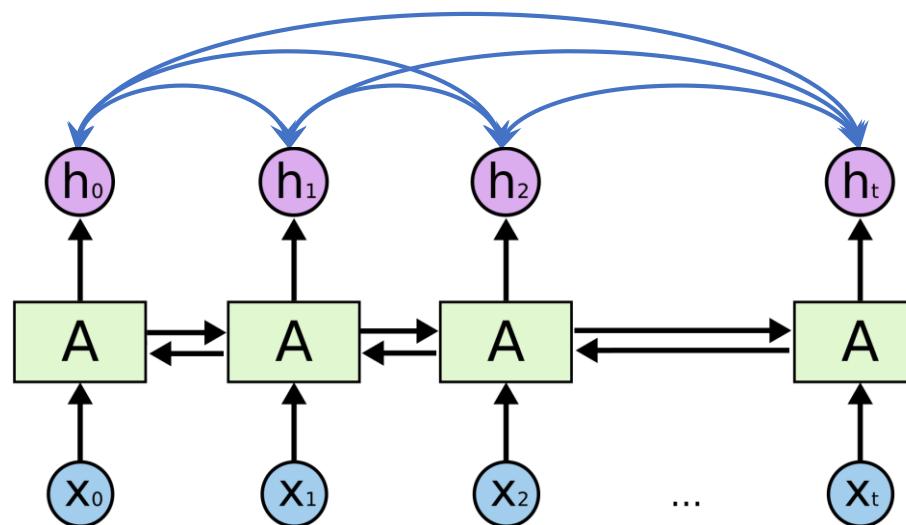
- Usually take the last hidden output as query
- Performance degrades if the distance is very long



Attention mechanism

✓ Bidirectional RNN with self-attention

- Attention of **all possible pairs** of any hidden outputs
- Alleviate but still suffer for long-distance problem



Transformer

✓ Self-attention

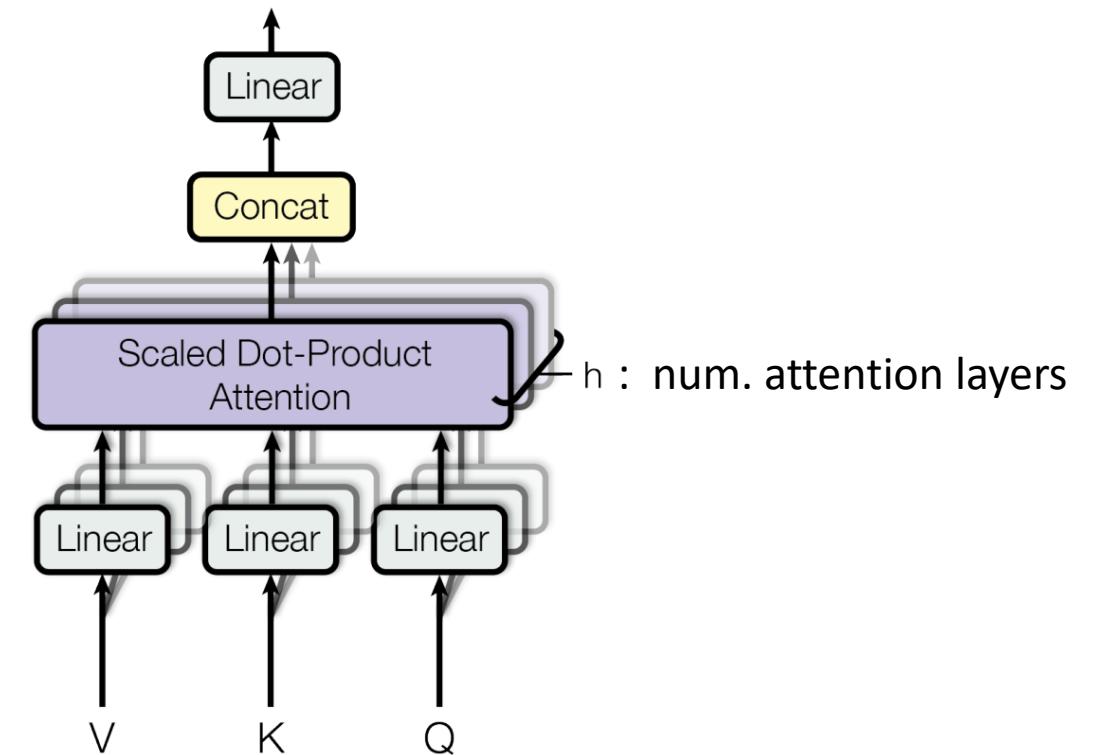
$$\begin{array}{c} \text{He} \\ \text{likes} \\ \text{dogs} \end{array} \quad d_k \quad \begin{array}{c} W_Q \\ \times \end{array} \quad \begin{array}{c} Q \\ = \end{array}$$
$$\begin{array}{c} \text{He} \\ \text{likes} \\ \text{dogs} \end{array} \quad \begin{array}{c} W_K \\ \times \end{array} \quad \begin{array}{c} K \\ = \end{array}$$
$$\begin{array}{c} \text{He} \\ \text{likes} \\ \text{dogs} \end{array} \quad \begin{array}{c} W_V \\ \times \end{array} \quad \begin{array}{c} V \\ = \end{array}$$

$$\text{softmax} \left(\frac{Q \times K^T}{\sqrt{d_k}} \right) \quad V$$
$$\begin{array}{c} \text{He} \\ \text{likes} \\ \text{dogs} \end{array} \quad \begin{array}{c} V \\ \times \end{array} \quad \begin{array}{c} \text{Attention} \\ = \end{array}$$

Transformer

✓ Multi-head attention

- Combine multiple attention layers **in parallel**
- Increase feature resolution
- Similar effect of ensemble



Transformer

✓ Transformer

- The first model entirely relies on self-attention
- No recurrent nor convolution operations

Layer Type	Complexity per Layer	Sequential Operations
Self-Attention	$O(\text{length}^2 \cdot \text{dim})$	$O(1)$
Recurrent	$O(\text{length} \cdot \text{dim}^2)$	$O(\text{length})$
Convolutional	$O(\text{kernel} \cdot \text{length} \cdot \text{dim}^2)$	$O(1)$

length: input length; dim: hidden size; kernel: kernel size

Transformer

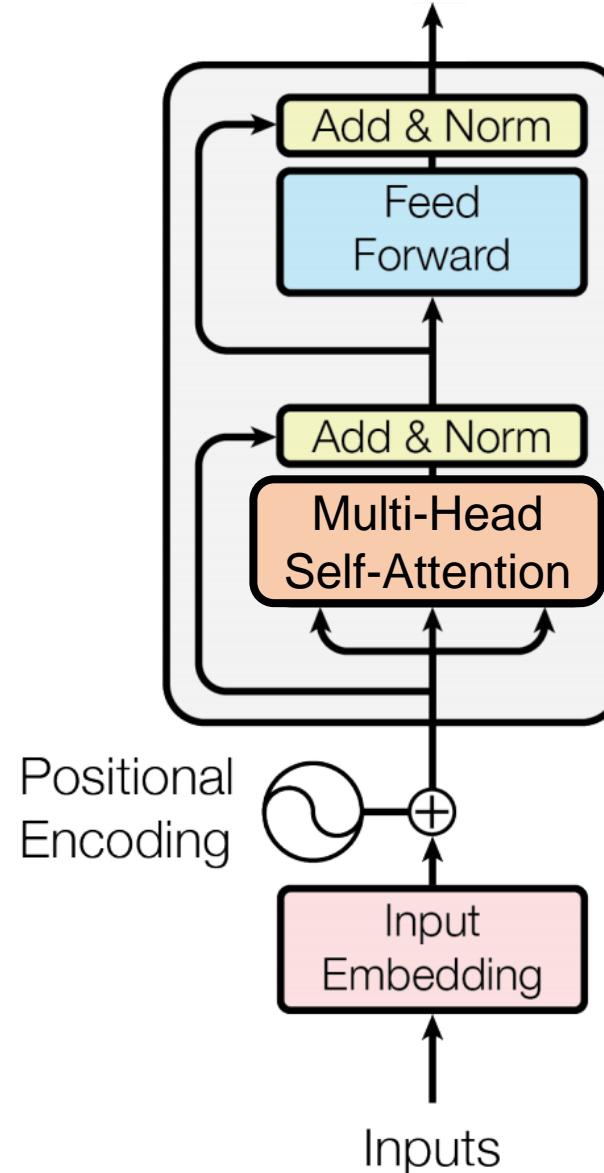
✓ Transformer encoder

- A multi-head self-attention layer
- Residual connections
- Layer normalization

$$x = \text{Emb(inputs)} + \text{Emb(position)}$$

$$z = \text{LayerNorm}(x + \text{MHSA}(x))$$

$$y = \text{LayerNorm}(z + \text{FFN}(z))$$



Transformer

BERT

XLNet

RoBERTa

ALBERT

Tokenization

Homework 6

✓ **BERT** -- Jacob Devlin et al., October 2018.

- **Bidirectional Encoder Representations from Transformers**
- **Pretrain representations from unlabeled text**
- **Can be easily finetuned for a wide range of tasks**
- **Obtained new state-of-the-art results on 11 NLP tasks**

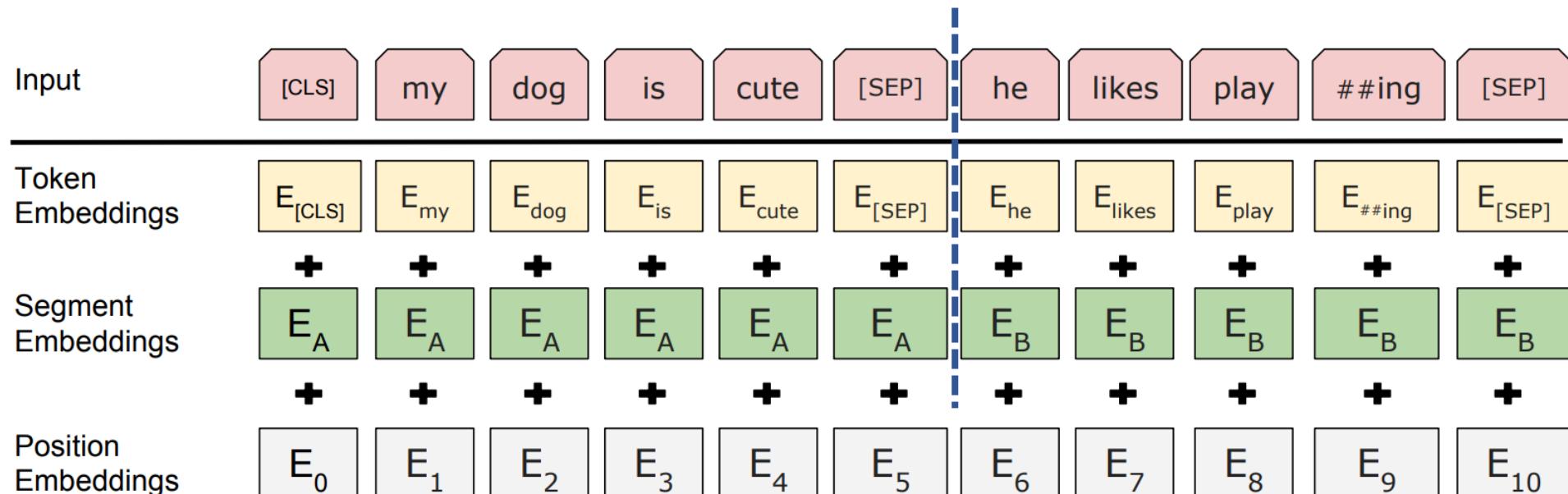
✓ **BERT** -- Jacob Devlin et al., October 2018.

- **Consists of stacked transformer layers and 3 embedding layers**
- **Officially provide multiple size of pretrained BERT**
- **BERT-base: 12 layers, 12 heads, 768-hidden (110M params)**
- **BERT-large: 24 layers, 16 heads, 1024 hidden (340M params)**

BERT

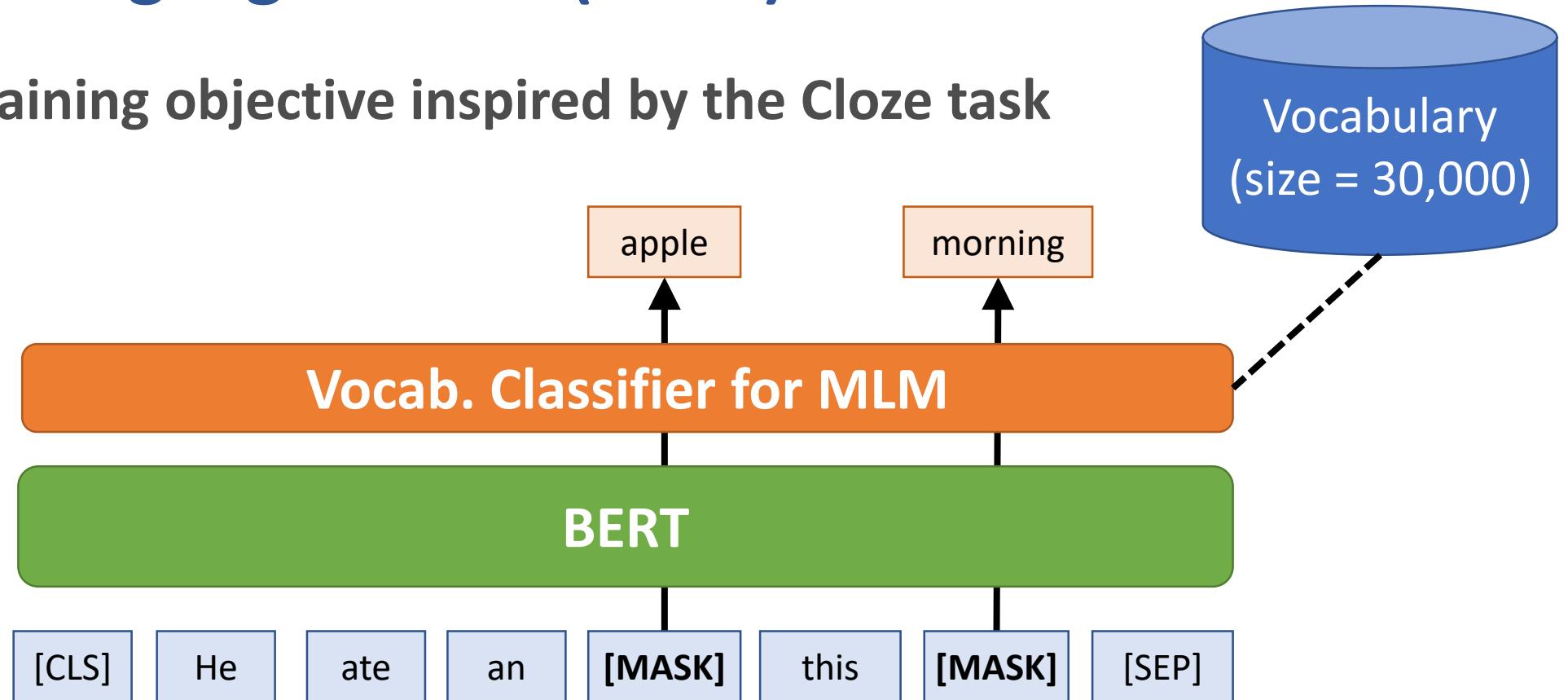
✓ **BERT** -- Jacob Devlin et al., October 2018.

- Use **WordPiece tokens** (a subword tokenization method)
- Sum up token/segment/position embeddings as input



✓ Masked Language Model (MLM)

- A pretraining objective inspired by the Cloze task



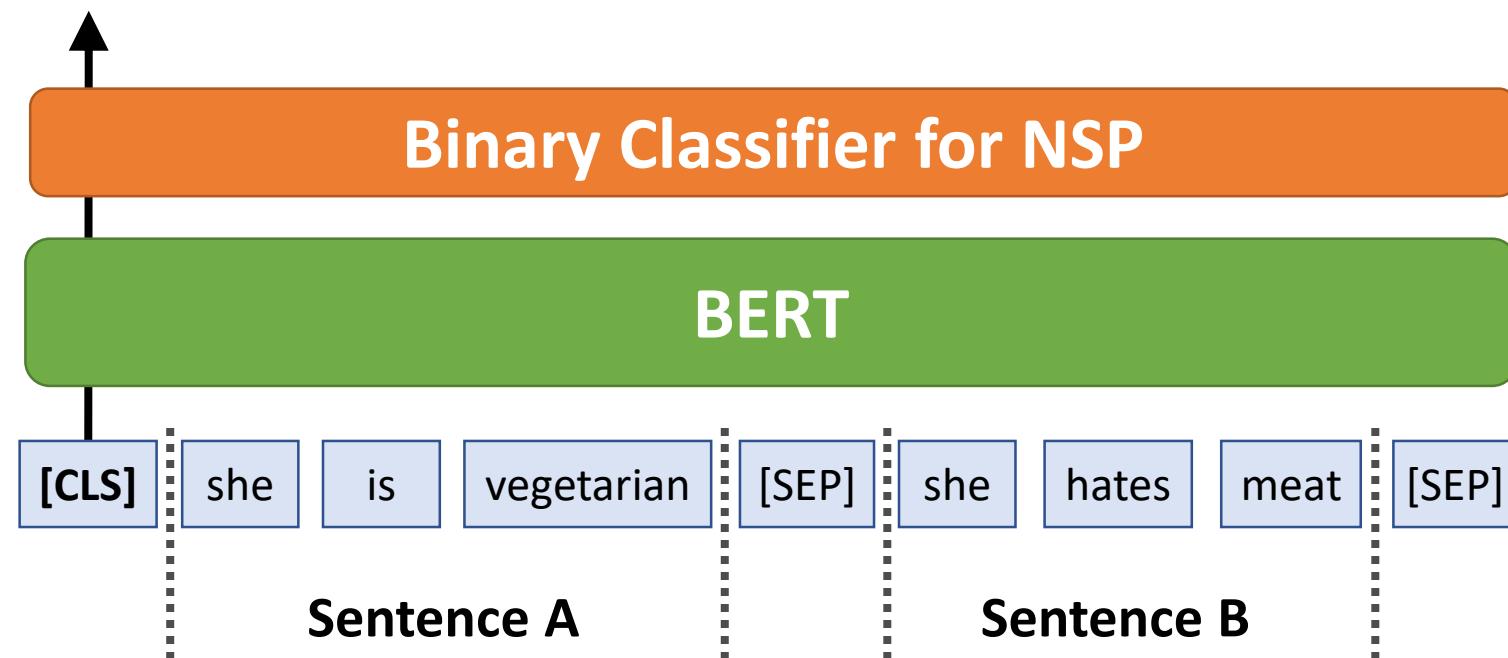
✓ Masked Language Model (MLM)

- A pretraining objective inspired by the Cloze task
- Randomly mask 15% tokens in each sequence
 - 80% are replaced with [MASK] token
 - 10% are replaced with other random tokens
 - 10% are keep unchanged
 - Masking and replacement is performed once in the beginning

✓ Next Sentence Prediction (NSP)

- Pretraining for understanding of sentence-level relationship

label = **1** if Sentence B is the actual next sentence of Sentence A, else **0**



✓ **Next Sentence Prediction (NSP)**

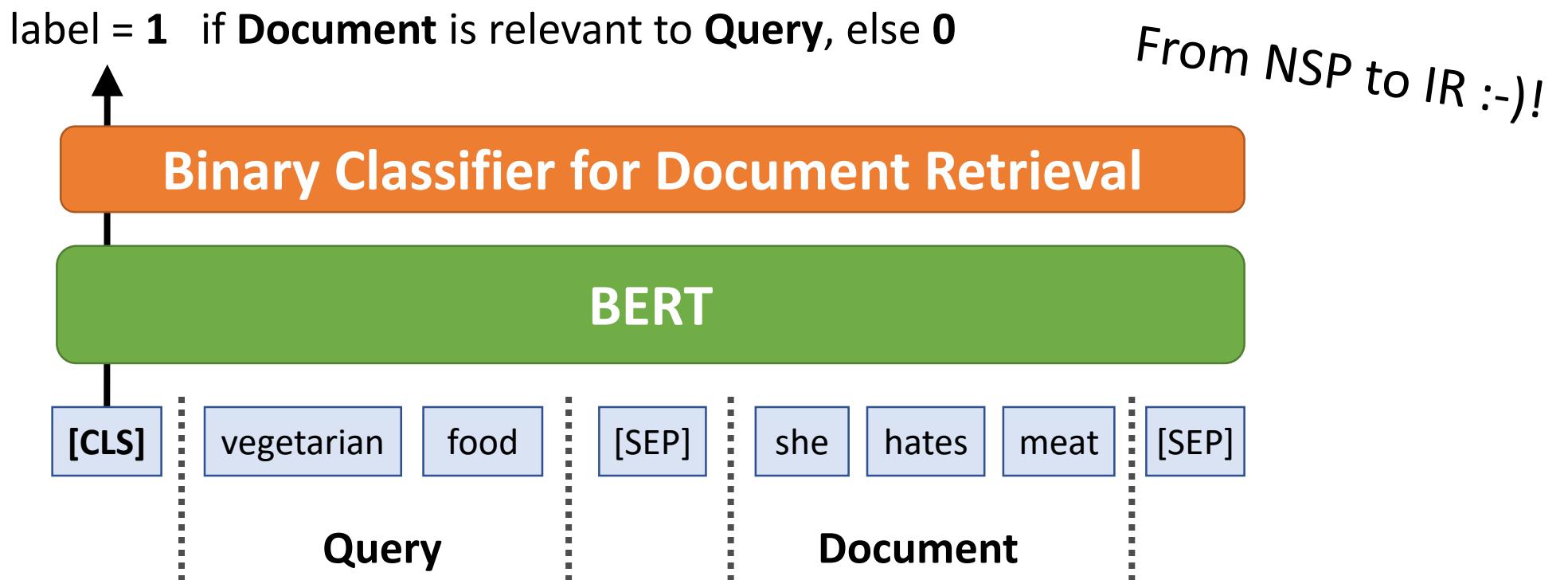
- Pretraining for understanding of sentence-level relationship
- Extract contiguous sequences from document-level corpus
 - 50% of Sentence B is the actual next sentence of sentence A
 - 50% of Sentence B is a random sentence from the corpus

✓ Pretraining of BERT

- **Jointly pretrain MLM and NSP objectives**
- **Officially pretrain on BooksCorpus (800M words) & Wikipedia (2.5B words)**
- **Classifiers in MLM and NSP are only used for pretraining**
(i.e. you should stack a new classifier on BERT for downstream tasks)

✓ Finetune BERT on downstream tasks

- Highly compatible due to its architecture and pretraining



Transformer

BERT

XLNet

RoBERTa

ALBERT

Tokenization

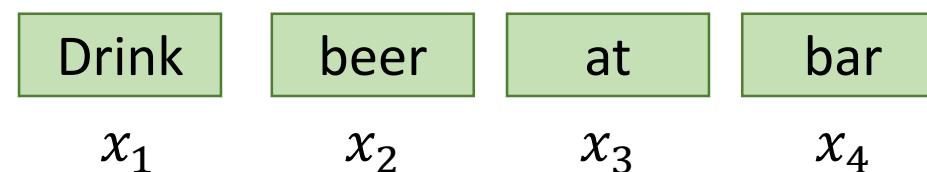
Homework 6

✓ Autoregressive (AR)

- Autoregressive language modeling: (unidirectional)
Predict x_3 with $\{x_1, x_2\}$; predict x_4 with $\{x_1, x_2, x_3\}$

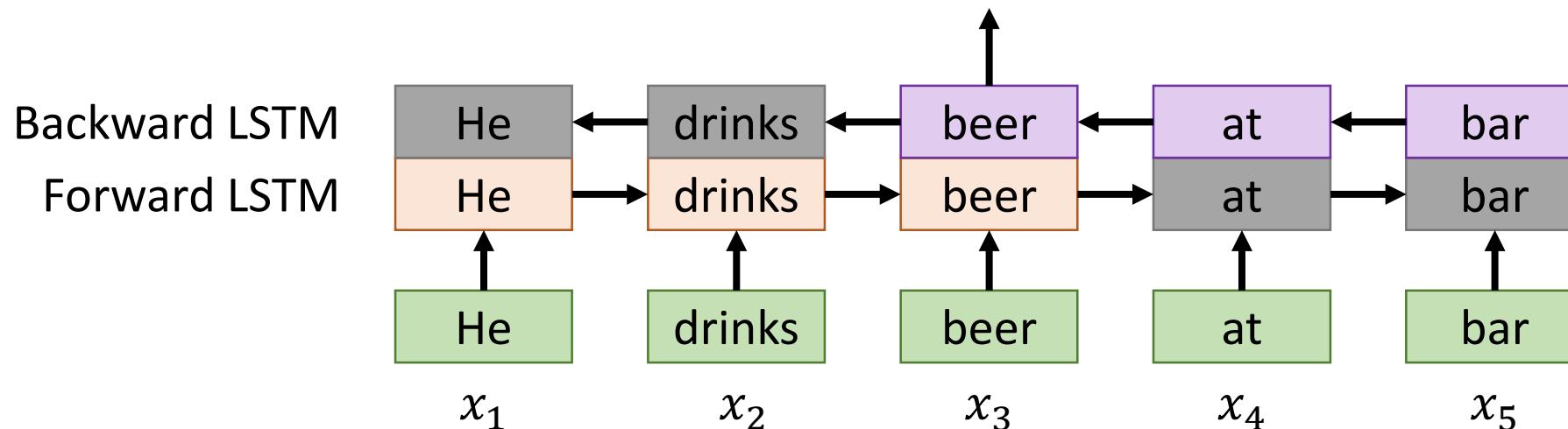
✓ Autoencoding (AE)

- Denoising autoencoding (DAE): data reconstruction (bidirectional)
Predict x_3 with $\{x_1, x_2, x_4\}$; predict x_4 with $\{x_1, x_2, x_3\}$



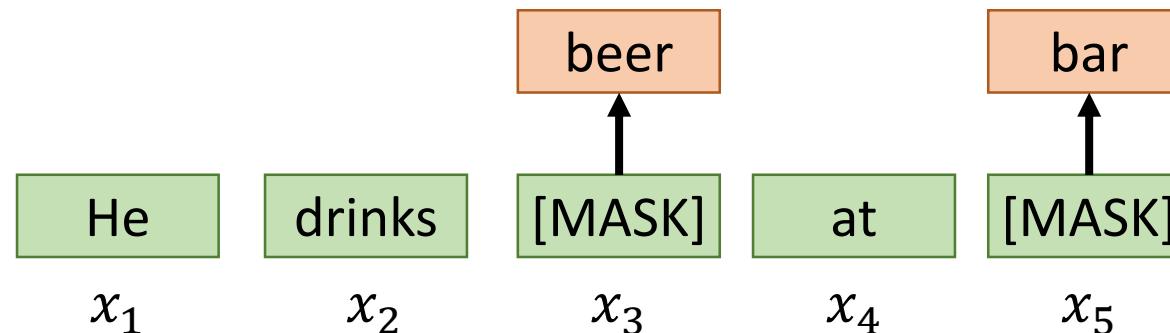
✓ **ELMo** -- Matthew E. Peters et al., March 2018.

- AR language modeling with bidirectional LSTM
- Base layer only encodes unidirectional information



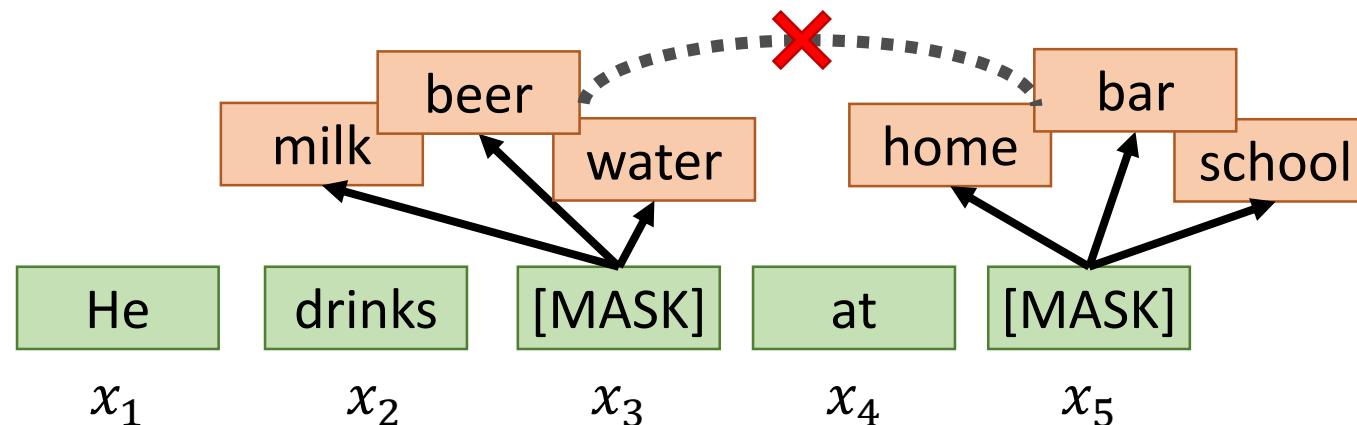
✓ **MLM is a DAE-based pretraining**

- Has capability of modeling bidirectional contexts
- BERT outperforms AR-based models like ELMo, GPT
- So... what's wrong with MLM?



✓ **MLM is a DAE-based pretraining**

- Predict $\{x_3, x_5\}$ with $\{x_1, x_2, x_4\}$:
→ unable to model the dependency between x_2 and x_4
- [MASK] token is never used in downstream tasks → input noise



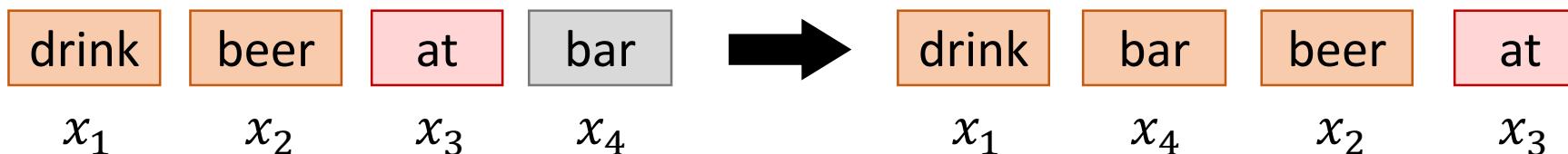
✓ XLNet -- Zhilin Yang et al., June 2019.

- A novel AR pretraining method which learns bidirectional context
- Overcomes the limitations of MLM thanks to AR formulation
- Not using [MASK] token for pretraining
- Outperforms BERT on 20 NLP tasks

In brief, XLNet has both the advantages of AR and AE

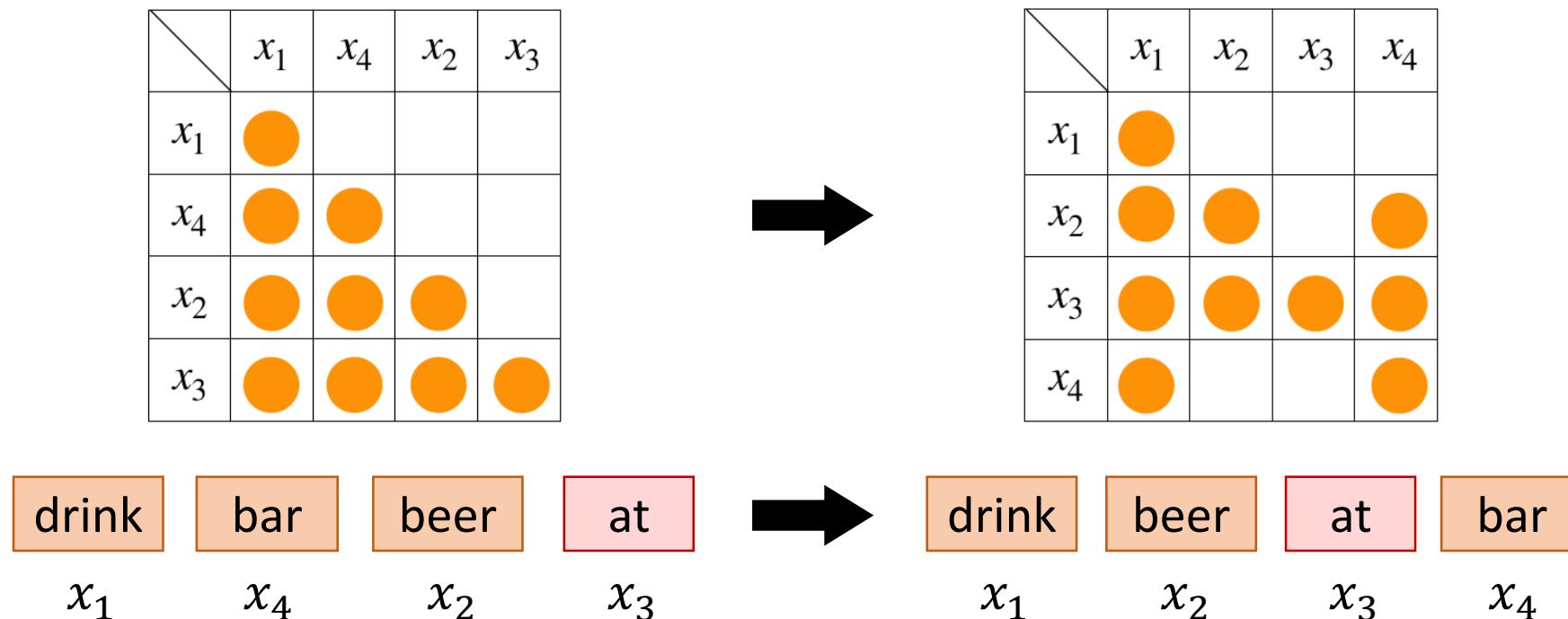
✓ Permutation Language Modeling (PLM)

- AR pretraining with all possible permutations of a sequence
 1. Permute $\{1, 2, 3, 4\}$ → predict x_3 with $\{x_1, x_2\}$ (regular AR)
 2. Permute $\{2, 4, 3, 1\}$ → predict x_3 with $\{x_2, x_4\}$
 3. Permute $\{1, 4, 2, 3\}$ → predict x_3 with $\{x_1, x_4, x_2\}$
 4. ...etc



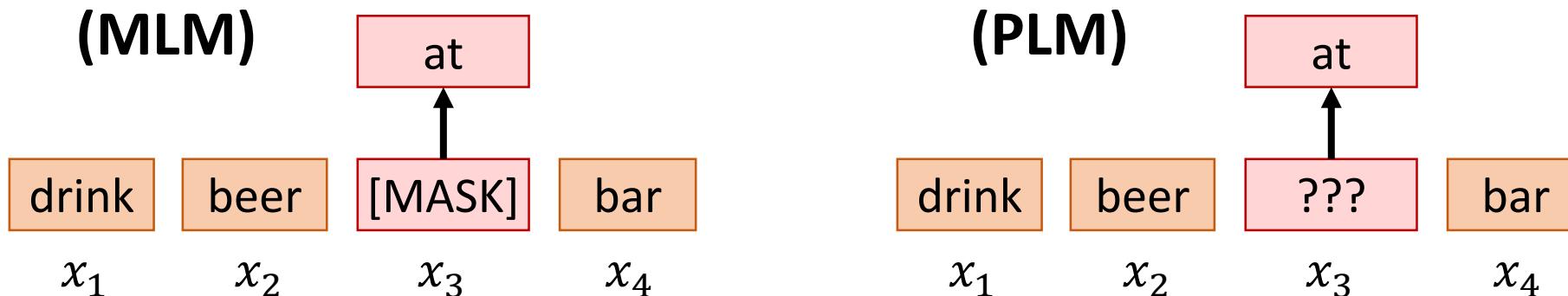
✓ Permutation Language Modeling (PLM)

- Autoregressive self-attention mask



✓ Permutation Language Modeling (PLM)

- AR now learns bidirectional contexts with input permutation
- The token classifier shall not see the target token!
- So... how to mask the target token **without using [MASK] token?**



✓ Two-Stream Self-Attention

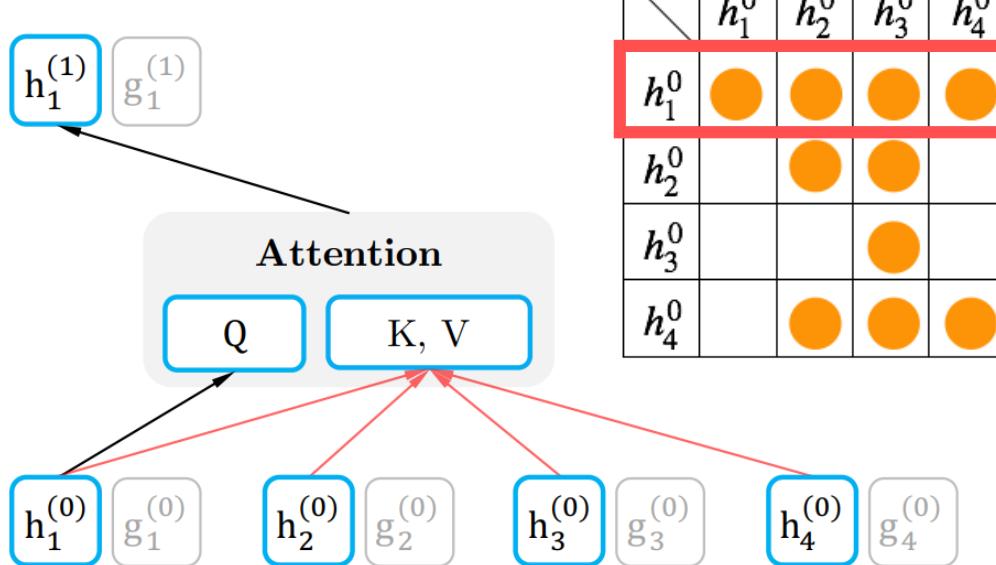
- Assume we have an AR self-attention mask,
and we want to predict x_1 with $\{x_2, x_3, x_4\}$

\backslash	h_1^0	h_2^0	h_3^0	h_4^0
h_1^0	●	●	●	●
h_2^0		●	●	
h_3^0			●	
h_4^0		●	●	●

✓ Two-Stream Self-Attention

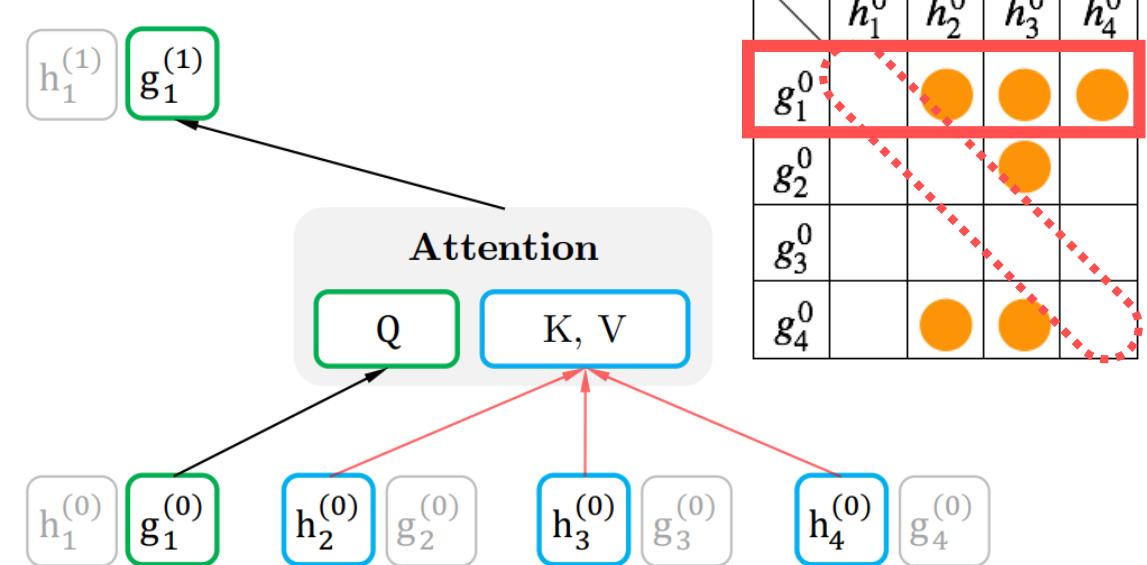
Content Stream:

can see self

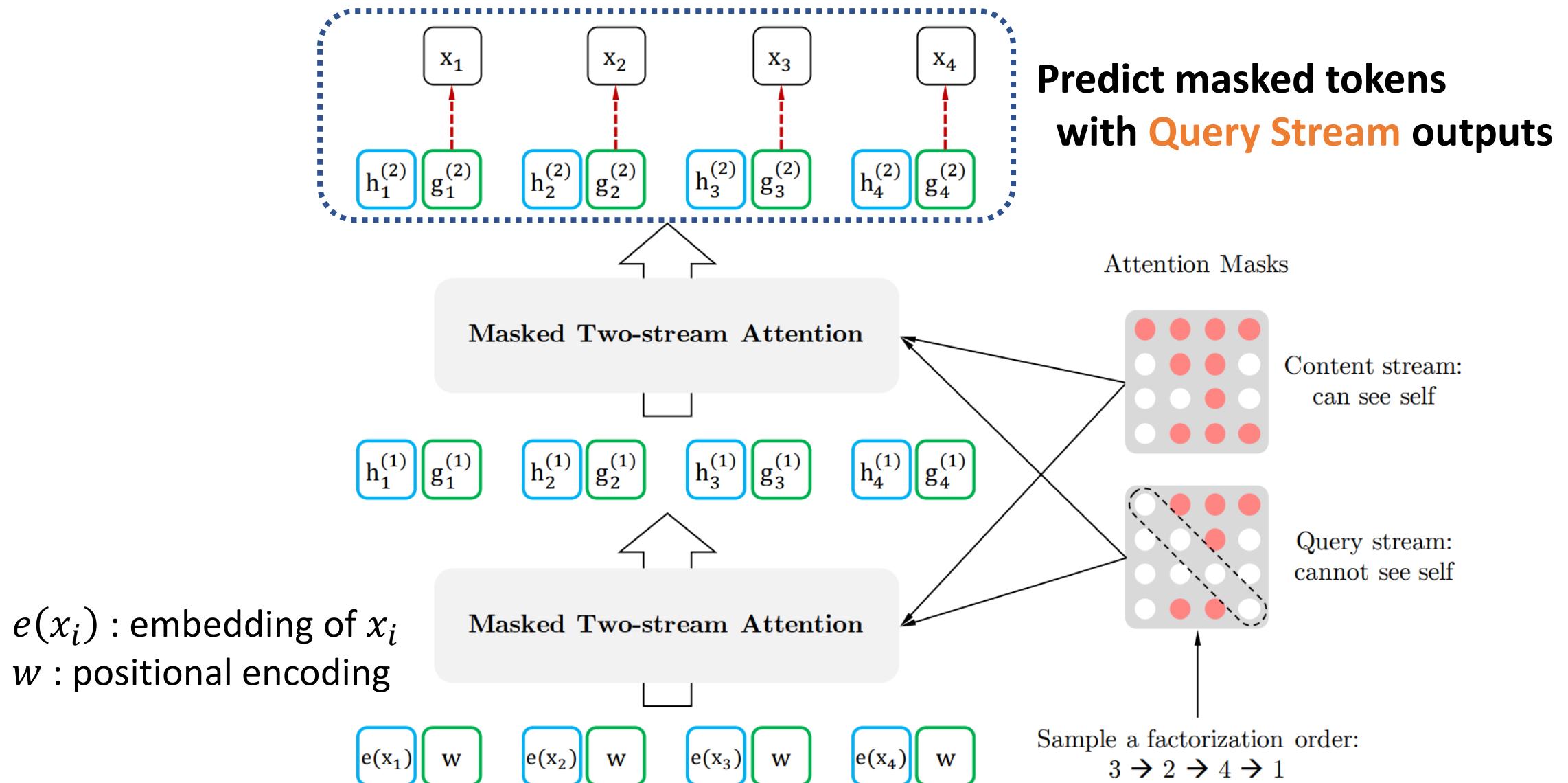


Query Stream: (for PLM only)

cannot see self



XLNet



✓ Pretraining of XLNet

- Pretrain PLM objective only (NSP is found unhelpful for XLNet)
- XLNet uses **SentencePiece** tokenization 10x **MORE DATA** ;-)
- Officially pretrain on BooksCorpus (800M words), Wikipedia (2.5B words), Giga5 (16GB text), ClueWeb 2012-B, and Common Crawl
- Query Stream is only used in PLM;
Content Stream is used in PLM and downstream tasks

Transformer

BERT

XLNet

RoBERTa

ALBERT

Tokenization

Homework 6

✓ RoBERTa -- Yinhan Liu et al., July 2019.

- Robustly optimized BERT approach
- Original BERT (by Google) is significantly undertrained
- Propose an improved recipe for training BERT models
- Match or outperform all post-BERT methods (e.g. XLNet)

RoBERTa

	BERT	RoBERTa
Batch size	256	8K
Training steps	1M	500K
Corpus size	13GB	160GB
MLM masking	Static (fixed once prepared)	Dynamic (generate on the fly)
Objective	MLM + NSP	MLM
Tokenization	WordPiece (vocab. size = 30k)	Byte-level BPE (vocab. size = 50k)
:		

RoBERTa

✓ RoBERTa

- **Significantly outperforms BERT on GLUE benchmark**
- **Outperforms XLNet on every single task in GLUE**

* General Language Understanding Evaluation (GLUE) benchmark*

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
<i>Single-task single models on dev</i>										
BERT _{LARGE}	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
XLNet _{LARGE}	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-

Transformer

BERT

XLNet

RoBERTa

ALBERT

Tokenization

Homework 6

✓ **ALBERT** -- Yinhan Liu et al., September 2019.

- **A Lite BERT**
- **Difficult to experiment with large models due to memory constraints**
- **Propose several parameter-reduction techniques**
- **Propose a new pretraining method to replace NSP**

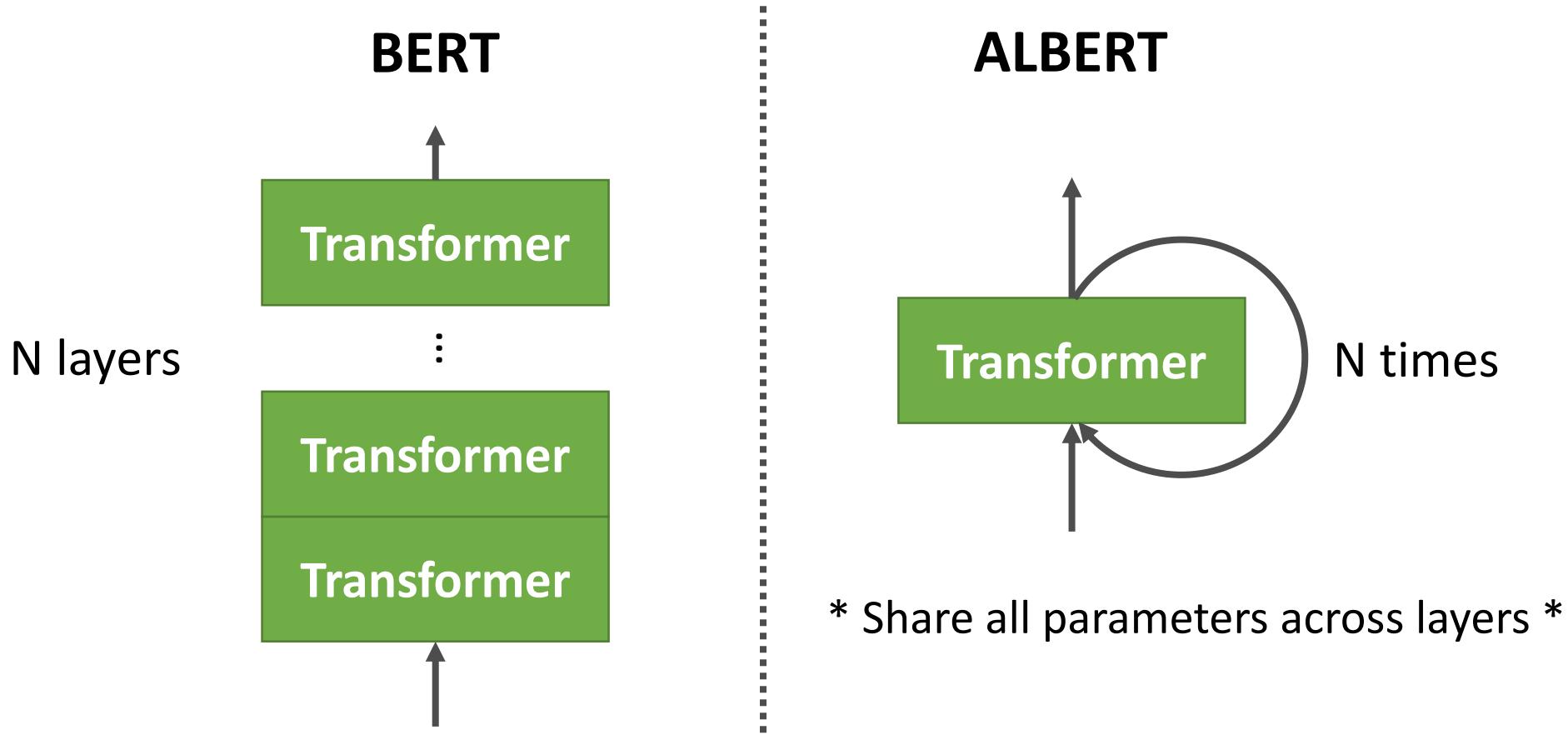
✓ Factorized embedding parameterization

- Word embeddings are meant to be context-independent
- Hidden outputs are meant to be context-dependent
- It is efficient and reasonable to have a smaller word dimension

Both BERT and ALBERT have vocabulary size = 30,000:

- BERT = Embedding(30000, 768) (23M params)
- ALBERT = Embedding(30000, 128) → FFN(128, 768) (4M params)

✓ **Cross-layer parameter sharing**



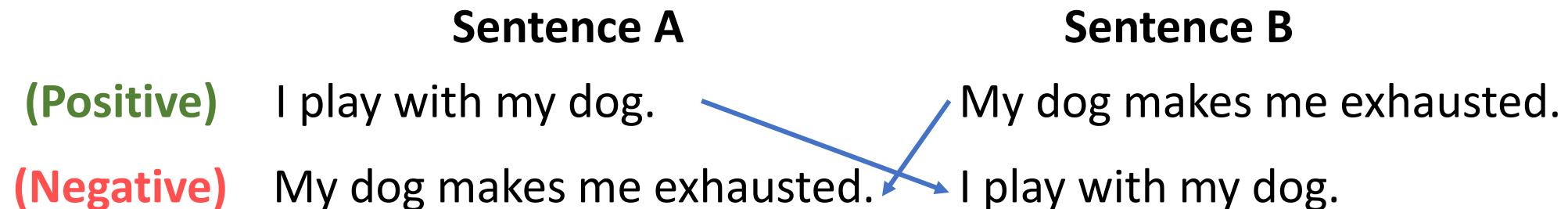
✓ Why is Next Sentence Prediction (NSP) unhelpful?

- NSP conflates topic prediction and coherence prediction
- It is much easier to learn topic prediction (high word overlapping)
- Models tend to learn the easier topic-prediction signal

	Sentence A	Sentence B
(Positive)	I play with my dog .	My dog makes me exhausted.
(Negative)	I play with my dog.	She drank a glass of water.

✓ Sentence Order Prediction (SOP)

- Swap the order of positive samples from NSP as negative samples
- Force models to learn coherence prediction (topics are unchanged)



✓ Pretraining of ALBERT

- Jointly pretrain MLM and SOP objectives
- ALBERT uses SentencePiece tokenization
- Officially pretrain on BooksCorpus (800M words) & Wikipedia (2.5B words)
 - * to fairly compare with BERT *

✓ Parameter-efficiency of ALBERT

- ALBERT can have **significantly fewer parameters** and faster speed without seriously hurting performance

	Model	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg	Speedup
BERT	base	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3	4.7x
	large	334M	92.2/85.5	85.0/82.2	86.6	93.0	73.9	85.2	1.0
ALBERT	base	12M	89.3/82.3	80.0/77.1	81.6	90.3	64.0	80.1	5.6x
	large	18M	90.6/83.9	82.3/79.4	83.5	91.7	68.5	82.4	1.7x
	xlarge	60M	92.5/86.1	86.1/83.1	86.4	92.4	74.8	85.5	0.6x
	xxlarge	235M	94.1/88.3	88.1/85.1	88.0	95.2	82.3	88.7	0.3x

Transformer

BERT

XLNet

RoBERTa

ALBERT

Tokenization

Homework 6

Tokenization

✓ Vocabulary issues

- Common vocab. size= 50k~200k for TFIDF/RNN-based models
- Millions of unique words in a big corpus like Wikipedia!
- Out-of-vocabulary (OOV) words **ALWAYS** exists! (e.g. internet slang)
- Subword: seek a trade-off between **semantics and memory**

✓ Byte Pair Encoding -- Philip Gage, February 1994.

- A data compression algorithm
- Algorithm flow:
 1. Vocabulary initialized with all unique characters
 2. Greedily merge bigram with **highest frequency**
 3. Stop merging if conditions are met (e.g vocab. size = 30k)

✓ Byte Pair Encoding -- Philip Gage, February 1994.

1. { "l o w": 5 , "l o w e r": 2 , "n e w e s t": 6 , "w i d e s t": 3 }
→ **Bigram freq.** = {**es: 9** , st: 9 , **we: 8** , lo: 7 , ow: 7 , ne: 6 , ... }
2. { "l o w": 5 , "l o w e r": 2 , "n e w **es** t": 6 , "w i d **es** t": 3 }
→ **Bigram freq.** = {**est: 9** , lo: 7 , ow: 7, ne: 6, ... , **we: 2** , ... }
3. { "l o w": 5 , "l o w e r": 2 , "n e w **est**": 6 , "w i d **est**": 3 }
→ **Bigram freq.** = {lo: 7 , ow: 7, ne: 6, ... , we: 2 , ... }

.....

Tokenization

✓ WordPiece -- Mike Schuster, March 2012.

- A variation of BPE with adaptation to language modeling
- Merge bigram which increases likelihood the most on the corpus

1. { “l o w”: 5 , “l o w e r”: 2 , “n e w e s t”: 6 , “w i d e s t”: 3 }

→ $\Delta \text{Likelihood} = \{\text{es}: 0.14, \text{ st}: 0.14, \text{ we}: 0.12, \text{ lo}: 0.11 \dots\}$

...

Tokenization

✓ **Unigram Language Modeling (Uni. LM)** -- Taku Kudo, April 2018.

Algorithm flow:

1. Vocabulary initialized with all possible substrings
2. Prune 20% tokens which decrease likelihood the most
3. Stop pruning if conditions are met

1. lower, ... → {l, o, w, e, r, lo, ow, we, er, ..., low, owe, ..., lowe, **ower**, lower...}
→ $\Delta \text{Likelihood} = \{ \text{ower: } -2.7, \text{ lo: } -1.3, \dots, \text{ we: } 0.12, \text{ low: } 0.11 \dots \}$

...

Tokenization

✓ BPE with vocab. = {dis, car, de, ed, d}

discarded → dis | car | de | ed * Greedy substitution *

✓ Uni. LM * Viterbi decoding for maximum likelihood *

discarded	→	discarded	0.0005	p = 0.0005
discarded	→	discard ed	0.006 0.3	p = 0.0018
discarded	→	dis car d ed	0.1 0.1 0.4 0.3	p = 0.0012
discarded	→	dis car de d	0.1 0.1 0.2 0.4	p = 0.0008
discarded	→	d i s c a r d e d	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	p ≈ 0.00026

Tokenization

✓ SentencePiece -- Taku Kudo et al., August 2018.

- A open-sourced library made by Google
- Take **whole sentences** to train BPE/Uni. LM

e.g. SentencePiece with BPE

1. { "this_is_lower": 3 , "what_is_the_newest": 2 }
→ **Bigram freq. = { is: 8 , th: 5 , we: 5 , ... }**

...

Tokenization

✓	BERT	WordPiece
✓	RoBERTa, GPT-2	BPE over raw bytes
✓	T5	BPE over Unicode characters
✓	XLNet, ALBERT	SentencePiece

- Both papers don't clarify whether they use BPE or Uni. LM

Transformer

BERT

XLNet

RoBERTa

ALBERT

Tokenization

Homework 6

✓ Homework 6

- Goal: Rescore BM25 retrieval with Transformer-based models
- Performance are measured with MAP@1000
- It is **NOT allowed** to use any approach
that doesn't involve a Transformer-based model!

e.g. **X** Simply finetune a strong BM25 system

e.g. **O** Strong BM25 + weak BERT (allowed but not encouraged)

e.g. **△** Strong BM25 = 45.08 → + BERT = 43.78 (harmful BERT rescoring)

Homework 6

✓ Homework 6

Given data:

- 100,000 documents
- 120 training queries & 80 testing queries (50% for private)
- Positive (i.e. relevant) document IDs for each training query
- Top-1000 BM25 document IDs and scores for all queries

Homework 6

✓ Homework 6

Data Explorer

336.33 MB

- documents.csv
- sample_submission.csv
- test_queries.csv
- train_queries.csv

< documents.csv (331.49 MB) Download Open

Detail Compact Column 2 of 2 columns

About this file Edit

This file contains all the documents for information retrieval.

▲ doc_id	▲ doc_text
Document ID	Document text
100000 unique values	99073 unique values
FBIS3-100	Language: <F P=105> English </F> Article Type:BNF [Text] Nairobi, 28 Feb (KNA) -- The chai...
FBIS3-10005	Language: <F P=105> Spanish </F> Article Type:BNF [Text] Havana, 25 Feb (DPA) -- Today, Cu...
FBIS3-10007	Language: <F P=105> Spanish </F> Article Type:BNF <F P=106> [From the "Evening Information R...
FBIS3-10009	Language: <F P=105> Spanish </F> Article Type:BNF <F P=106> ["Stenographic version" of state...

Homework 6

✓ Homework 6

Data Explorer

336.33 MB

documents.csv

sample_submission.csv

test_queries.csv

train_queries.csv

◀ train_queries.csv (2.93 MB)

Detail Compact Column

About this file

This file contains queries, positive (relevant) and BM25 top-1000 document IDs for training.

query_id	query_text	pos_doc_ids	bm25_top1000	bm25_top1000_s...
Query ID	Query text	Space-delimited document IDs which are relevant to the query	Space-delimited top-1000 document IDs ranked by BM25 (far left one is top-1)	Corresponding scores for "bm25_top1000" column
302	120 unique values	120 unique values	120 unique values	120 unique values
302	Poliomyelitis and Post-Polio	FBIS3-20548 FBIS3-22539 FBIS3-22560 FBIS3-22589 FBIS3-26593 FBIS3-41672 FBIS3-41724 FBIS3-60403 FBIS...	FBIS4-67701 LA043090-0036 LA031489-0032 FBIS4-30637 FR940126-2-00106 FBIS3-60405 LA072890-0066 FBIS3...	32.84784386 31.61291462 23.97999093 22.78184683 19.16614366 18.75011496 18.37276912 18.03671536 18.0...
305	Most Dangerous Vehicles	FT922-1008 FT922-8544 FT944-136 FT944-15615 FT944-5300 FT944-9371 LA012590-0229 LA020490-0021 LA0205...	FBIS4-55132 FBIS3-56026 LA102790-0086 LA011490-0142 LA031689-0177 LA042690-0137 FBIS4-66625 LA021689...	16.54545283 16.40211005 16.06694476 15.48911938 15.24177722 14.76031153 14.52218082 14.35904320 14.3...

Homework 6

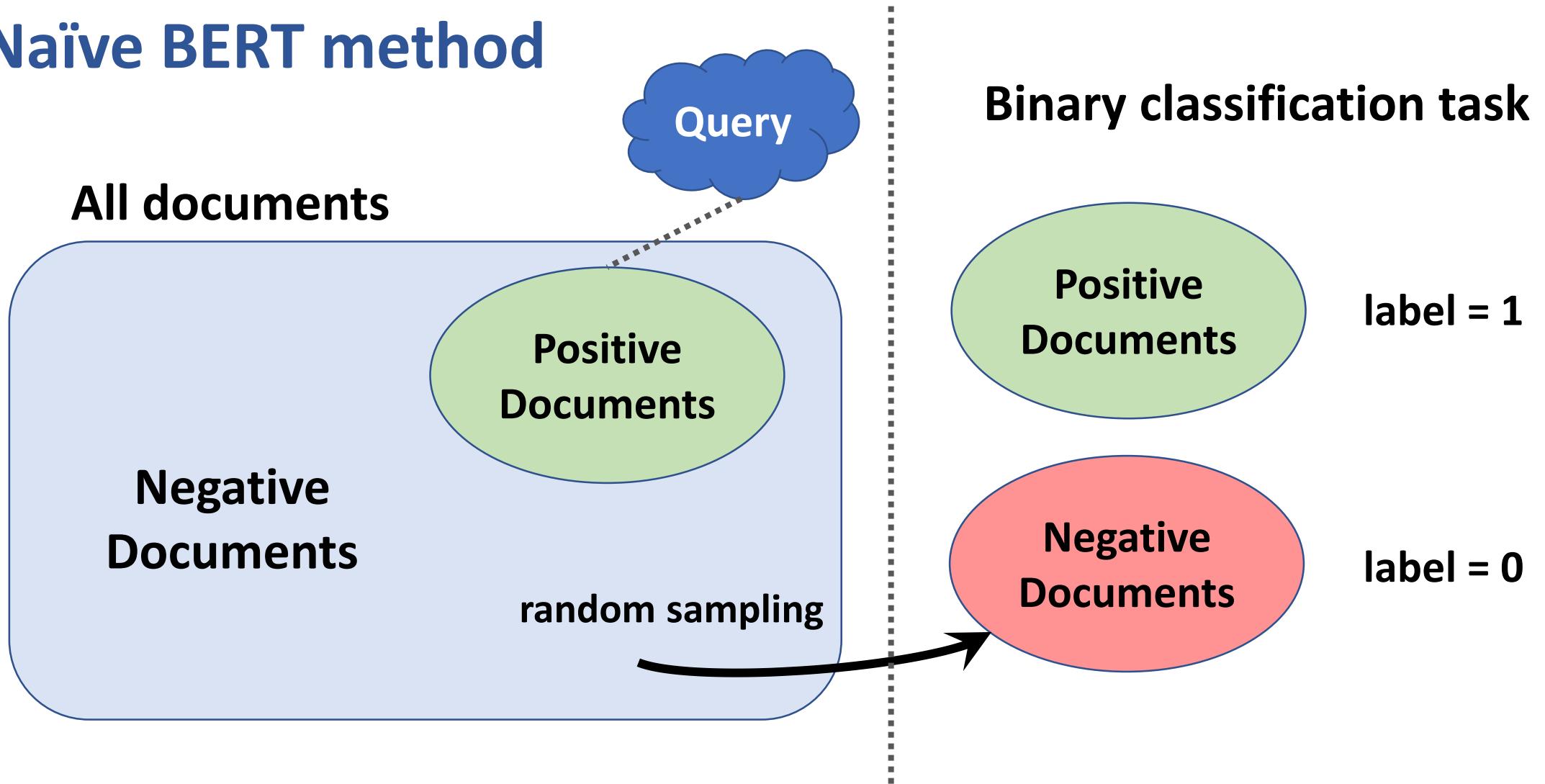
✓ Homework 6

Document IDs/scores are saved as space-delimited strings:

- **query_id** = 302
- **pos_doc_ids** = “FBIS3-20548 FBIS3-22539 FBIS3-22560 FBIS3-22589
FBIS3-26593 FBIS3-41672 FBIS3-41724 FBIS3-60403 ...”
- **bm25_top1000** = “FBIS4-67701 LA043090-0036 LA031489-0032
FBIS4-30637 FR940126-2-00106 FBIS3-60405 ...”
- **bm25_top1000_scores** = “32.84784386 31.61291462 23.97999093
22.78184683 19.16614366 18.75011496 ...”

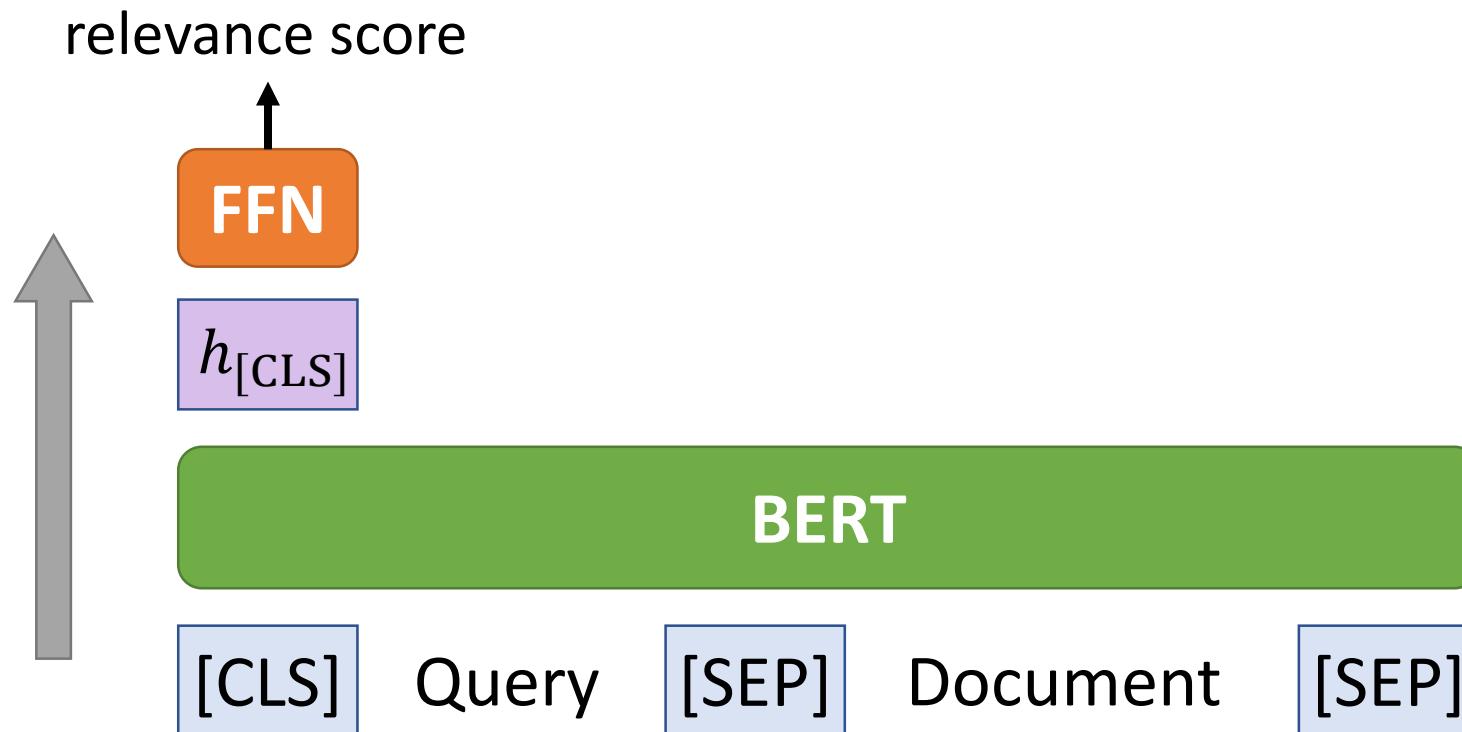
Homework 6 – 2019 Baseline

✓ Naïve BERT method



Homework 6 – 2019 Baseline

✓ Naïve BERT method



Homework 6 – 2019 Baseline

✓ Problems of naïve BERT method

- **Need to score all documents for a single query**

Testing set: 80 queries * 100,000 docs = 8,000,000 computations

- **Lack of difficult samples**

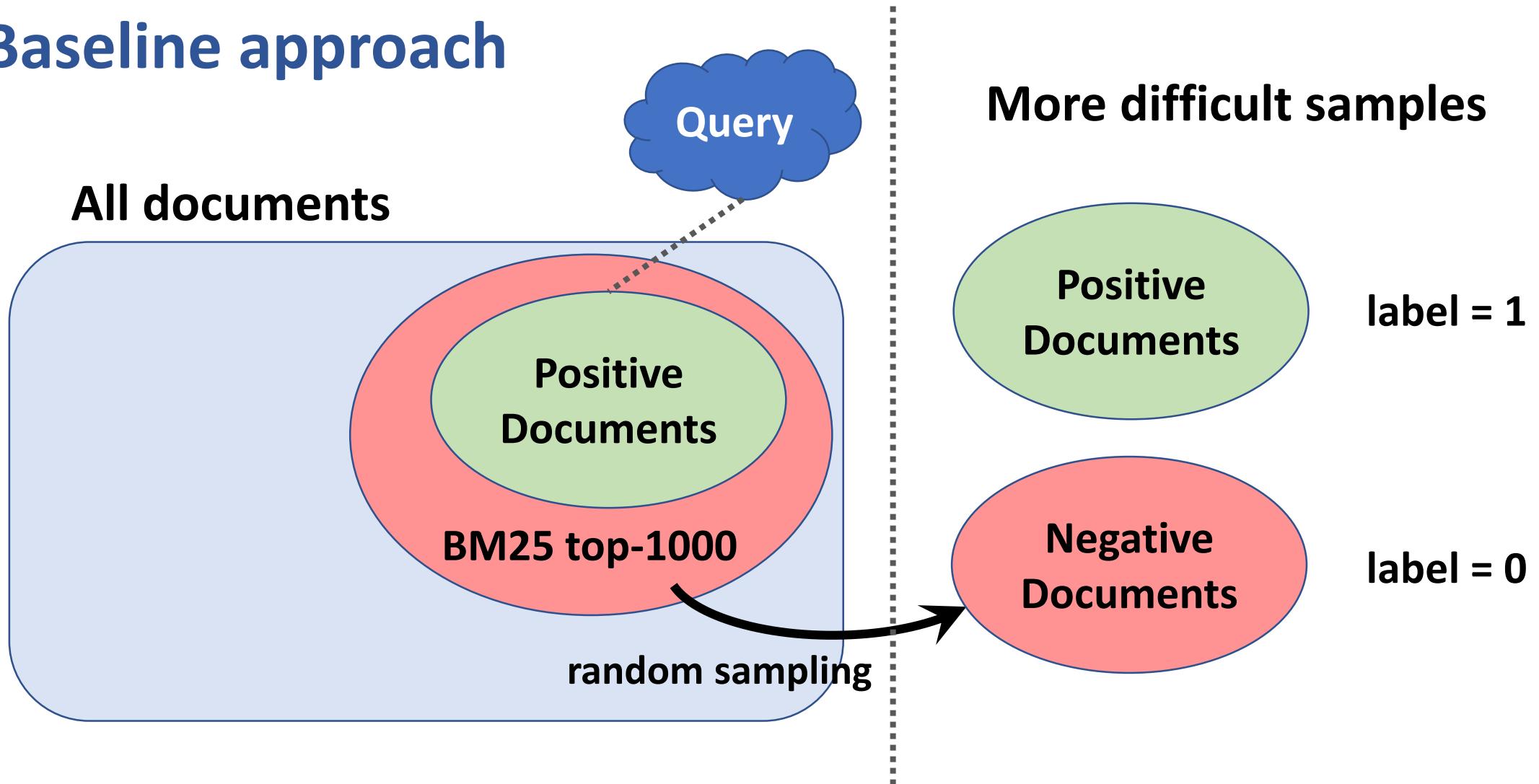
e.g. Positive/negative documents should look similar

- **Positive/negative documents are independently trained**

BERT cannot learn by comparing between pos./neg. documents

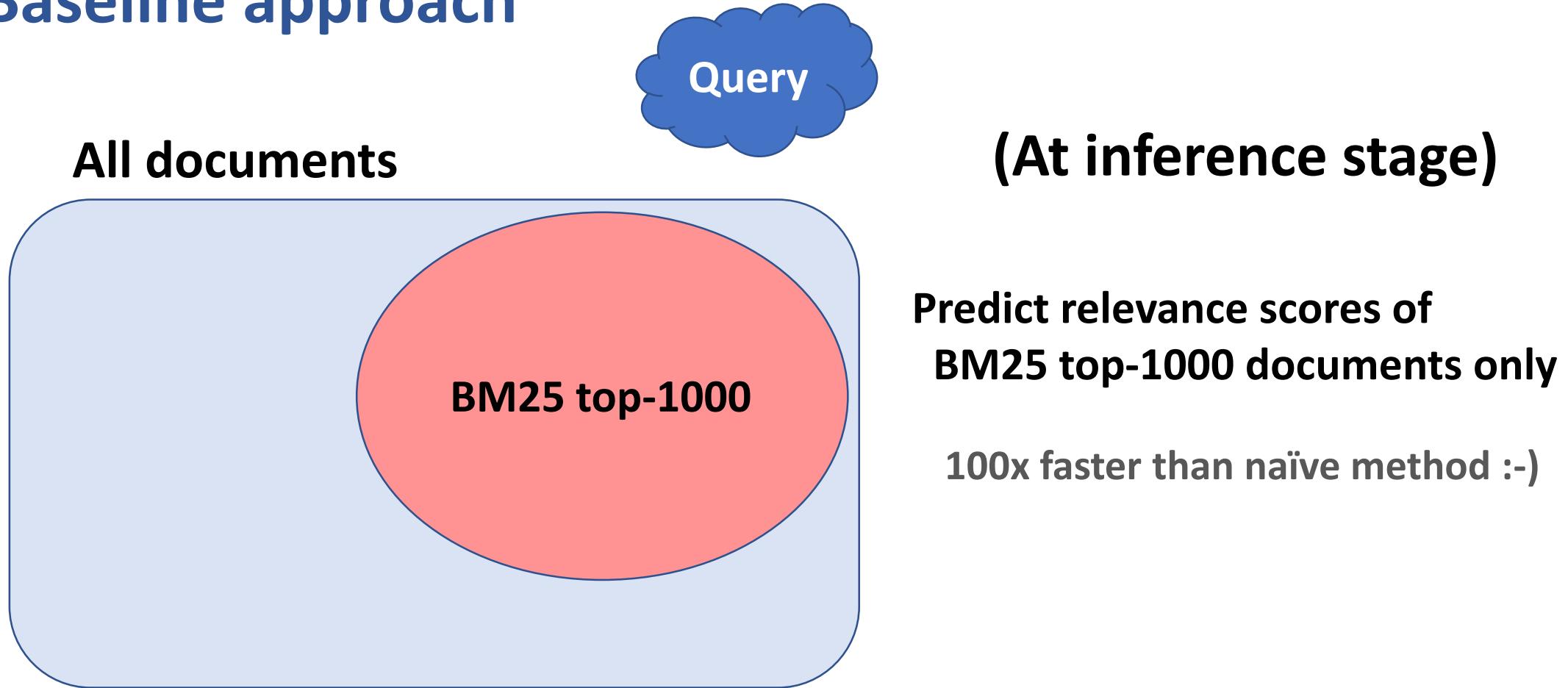
Homework 6 - Baseline

✓ Baseline approach



Homework 6 - Baseline

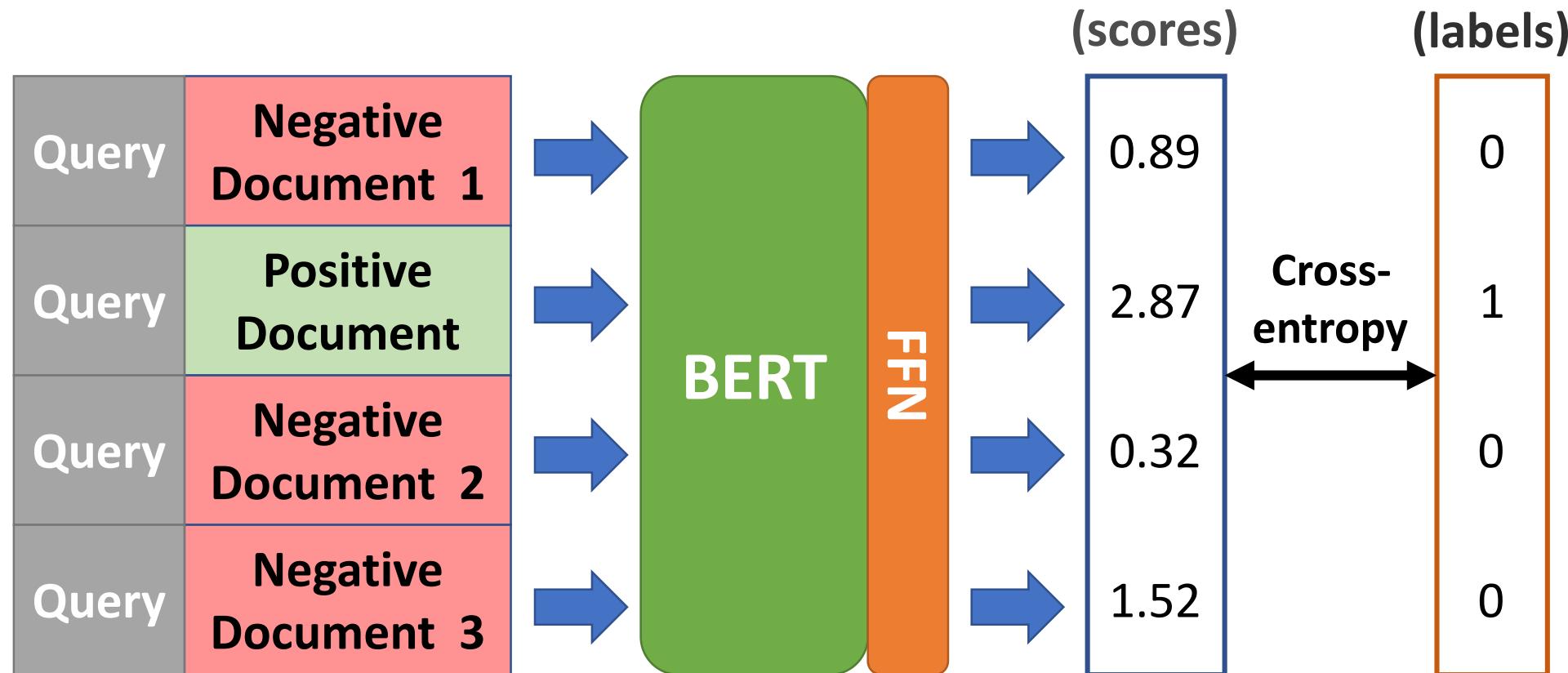
✓ Baseline approach



Homework 6 - Baseline

✓ Baseline approach

Multiple-choice classification task



* Scores are independently predicted *

Homework 6 - Baseline

✓ Baseline approach

- For each query,
rescore BM25 top-1000 documents with:

$$score_{new} = score_{BM25} + \alpha \cdot score_{BERT}$$

Homework 6 - Baseline

✓ **Baseline settings** It takes 1~1.5 hrs to run everything on a free Kaggle kernel :-)

Hyperparameters for BERT:

- **Pretrained paramters:** “bert-base-uncased”
- **Optimizer:** AdamW w/ learning rate = 3e-5
- **Num. epochs** = 1
- **Num. of negative documents** = 3
- **Batch size** = 2
- Split 20% of training queries to grid search optimal α for BERT

Homework 6

✓ Baseline performance

	Method	MAP@1000
(HW6 Baseline)	BM25 + $\alpha \cdot$ BERT	45.084
	BM25	39.136
	Rerank BM25 w/ BERT only	30.248
	Random Documents	0.007

Homework 6

✓ Free Kaggle GPU & TPU v3-8

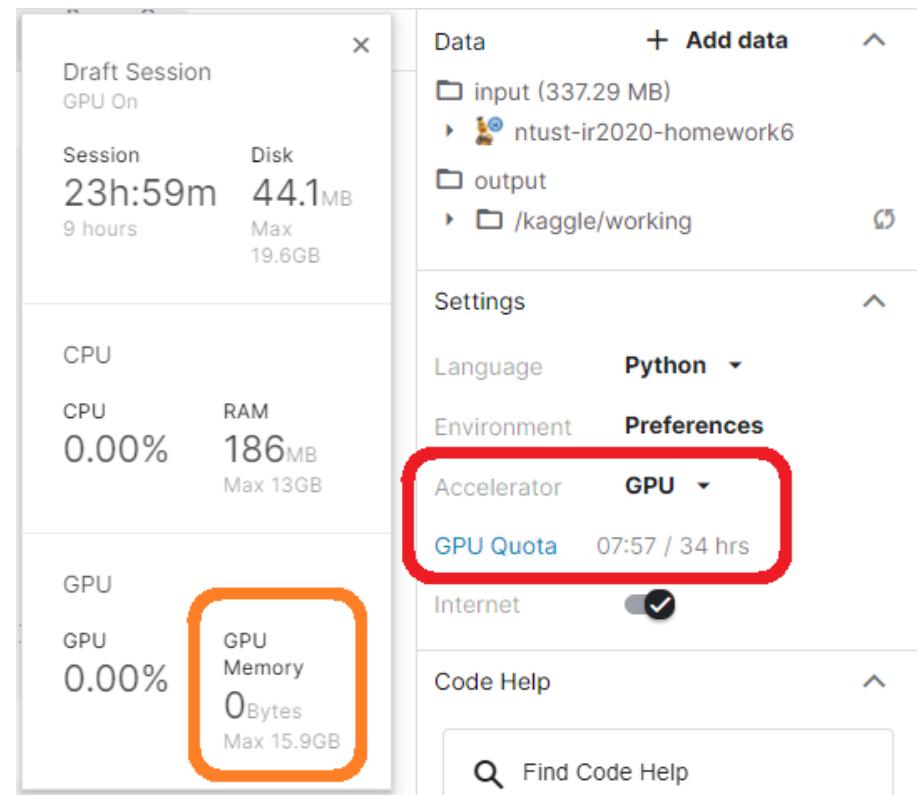
- Kaggle provides free GPU (16GB VRAM) quota of **30+ hrs/week**
- Requires **phone verification**



Homework 6

✓ Free Kaggle GPU & TPU v3-8

- Kaggle provides free GPU (16GB VRAM) quota of **30+ hrs/week**
- Requires **phone verification**



Homework 6

✓ Preferred tools & tutorials

- PyTorch:

Official tutorial (~ 60 minutes)

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

- Huggingface's Transformers

Quick tour on Github & usage examples in documentation

<https://github.com/huggingface/transformers>

<https://huggingface.co/transformers/>

Homework 6

✓ Submission

- Kaggle URL: <https://www.kaggle.com/t/4a26f9f4ba1b4feb952d5aaf98eee94>
- You can submit 5 times per day.
- You can select 2 submissions to be used for your final score.
- **Deadline: 2021/1/4 23:59 (Monday)**

Homework 6

✓ **Grading** 15 points in total

1. Outperform baseline	get 5 points
2. Experiment report	2 point at max
3. Peer competition	8 point at max

$$\text{Peer score} = 8 \times \frac{\text{your MAP} - \text{baseline MAP}}{\text{1st MAP} - \text{baseline MAP}}$$

* Based on MAP of **private leaderboard** *

Thank you for your attention!

Any questions or comments?

郭家錦 (Chia-Chih Kuo)

Natural Language Processing Laboratory
National Taiwan University of Science and Technology